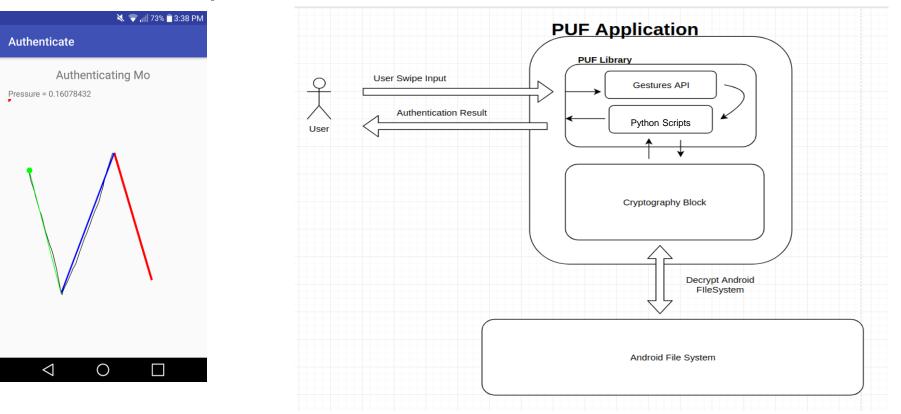
sdmay19-23 presents:

Mobile, Biometric Bitlocker

Advisor and Client: Dr. Akhilesh Tyagi and Timothy Dee http://sdmay19-23.sd.ece.iastate.edu/

Problem Statement

Problem:


- Android phones lack a Trusted Platform Module (TPM).
- Encryption keys must be stored somewhere somehow.
 - If the keys are stored on the devices, they can be found and could fall into malicious hands.

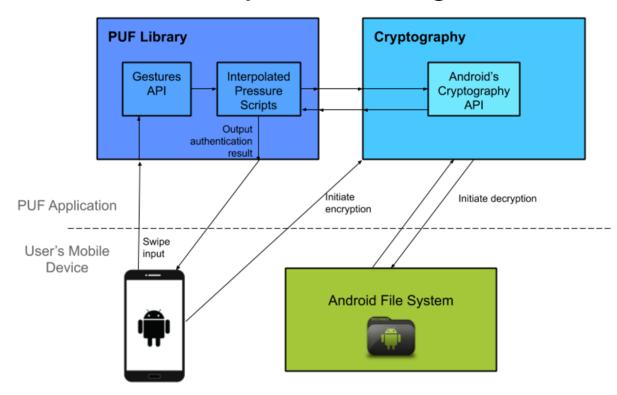
Solution:

 Dynamically generate the key using a Physical Unclonable Function (PUF).

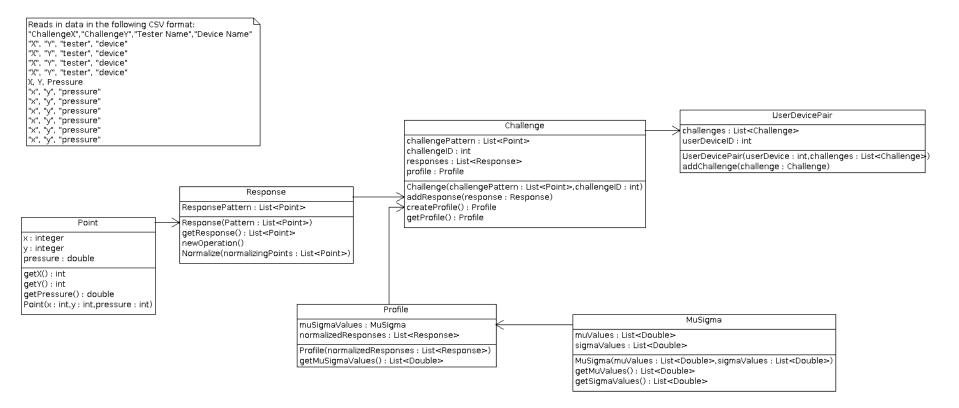
Initial Conceptual Sketch

Requirements Specification

Functional Requirements


- Application should encrypt and decrypt data without corruption.
- Only an authenticated user may access data.
- Encryption continues when phone is locked.
- Authentication required when an application is opened.

Non-Functional Requirements


- Application can store multiple user profiles.
- Response time for authentication takes no longer than 5 seconds.
- Gitlab repository should generate the application APK automatically.
- Only the creator can unlock their profile.
- Authentication accuracy of at least 80%.

System Design and Development

System Design

PUF UML

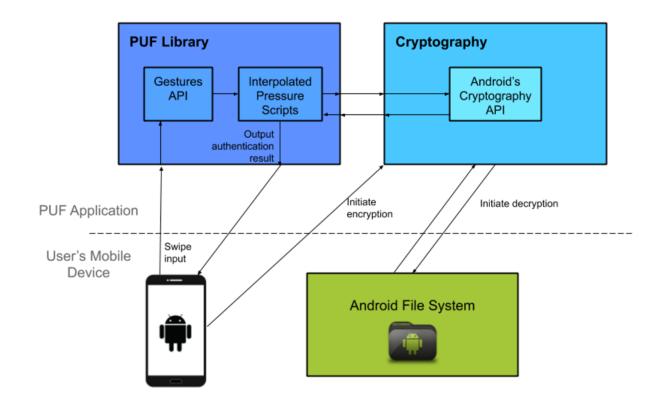
PUF Library Decomposition

- Gestures API
 - Reads data from user-device gesture interaction
 - Creates user device pair
 - Provides challenges
 - User completes challenges
 - Challenges create profile
 - User-device pair created from list of challenges and their responses
- Interpolated pressure scripts
 - Performs various statistical analyses and operations
 - Normalized trace: represent each trace as a set of pressure values at certain points
 - Authenticate based on normalized trace

Cryptography Block

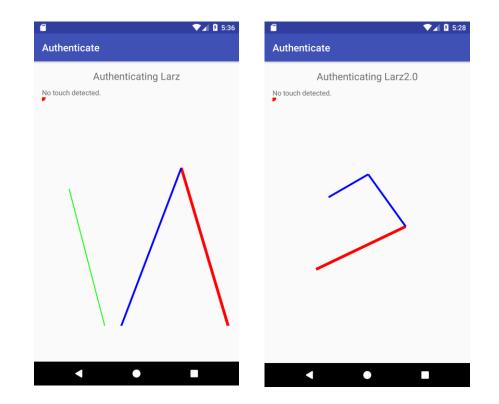
- Android cryptography API is used for encryption
 - Have researched dm-crypt and fscrypt for kernel level
- Attempting to mimic Trusted Platform Module (TPM) on computers
- Client's end goal is to encrypt at the kernel level like Windows Bitlocker (fulldisk encryption)
 - Started with application-level encryption
 - Progressively researched and experimented with encrypting at lower levels
- Kernel-level encryption deemed infeasible

System Requirements

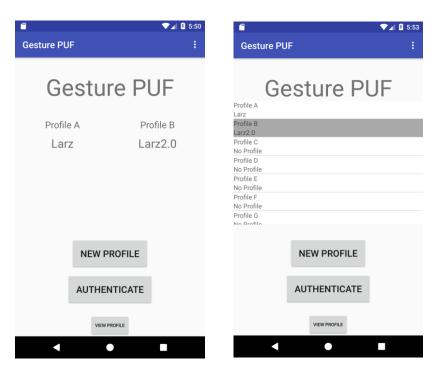

- 1. Software
 - a. Android Operating System
 - b. Minimum Version 5.1 (Lollipop)
- 1. Hardware
 - a. Should be able to be run on any hardware that is running required Android Version
 - b. Should have a touch screen
- 1. Operating Environment
 - a. Nexus 7

Implementation

Demo



Final Implementation


PUF Library

- Fixed implementation
- Fixed trace pattern

Encryption and Mobile Application

- Added ability to encrypt and decrypt using a dynamically generated key
- Added multiple profiles

Rationale

- PUF design decisions
 - The only decisions we were apart of was rewriting internal scripts.
 - We wrote internal Python scripts in Java.
 - To fix them and for easier use in kernel.
- Stopping at application level
 - We decided to stop at application level due to PUF library issues.
 - We were spending more time updating and fixing PUF than on implementing other features.
 - No straightforward way to integrate at kernel level.

Testing, Validation and Evaluation

Test Plan

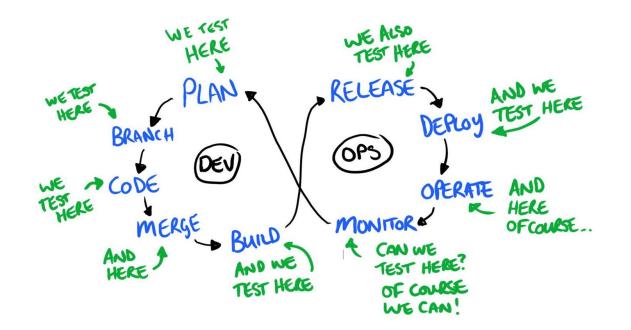
- Unit Testing
 - Designed simultaneously during development
 - Tests core functionality of a component
- Integration Testing
 - Created when combining between multiple components
 - Designed to test specific interactions between two components
- System Testing
 - Full operational behavior of the application with actual data
 - Largely performed towards the end of project

Sample Test Cases

- Only authenticated users may access user application data
 - User A has authentication profile
 - User A and B complete authentication trace
 - Only User A with an authentication profile is allowed
- Response time of authentication should take less than 5 seconds
 - User A completes authentication trace
 - Authentication process notifies user A results in under 5 seconds

DevOps

Tests:


- Pull Requests
- Merges to master

Builds:

- JAR (PUF)
- APK (App)

Deployments:

• Google Play Store

Source: https://www.testingexcellence.com/testing-in-devops/

Project and Risk Management

Project Schedule - Fall 2018

			August	September	October	November	Dec.
TASK	START	END					
Initial Bitlocker Consultations	8/30/2018	9/6/2018					
Research Phase	9/10/2018	10/23/2018					
Familiarize team with PUF	9/10/2018	10/8/2018					
Determine if and how encryption can be performed at kernel level	9/10/2018	10/23/2018					
Familiarize team with PUF applications created by previous senior design teams (reading and testing code and client consultation)	9/10/2018	10/29/2018					
Create documentation summarizing findings	10/8/2018	10/29/2018					
Design Phase							
Establish an initial design document	10/8/2018	11/5/2018					
Improve design document, establishing a more official architecture	11/5/2018	12/7/2018					
Development Phase							
Eliminate unnecessary code from provided PUF repository	10/22/2018	10/29/2018					
Create a new Android application for the bitlocker (PUF-based)	10/22/2018	10/29/2018					
Fix broken algorithms within the provided PUF library	10/22/2018	11/5/2018					
Implement application level encryption on Android	11/5/2018	12/7/2018					

Project Schedule - Spring 2019

			January February		Jary		March		April		May			
TASK	START	END												
Research Phase														
Determine feasibility of full-disk encryption	2/18/2019	2/25/2019												
Investigate extension of application as lock screen	3/25/2019	4/8/2019												
Determine feasible methods of kernel level encryption	3/25/2019	4/15/2019												
Development Phase														
Locate and resolve PUF-related issues	1/21/2019	4/17/2019												
Modified normalization method	1/21/2019	1/28/2019												
Implement key generation from quantize data	2/4/2019	4/8/2019												
Implement application-level encryption by user profile	2/14/2019	4/8/2019												
Integrate PUF library features with PUF application	4/8/2019	4/15/2019												
Testing Phase														
Integration of newly written java libraries (interpolation pressure)	2/4/2019	2/25/2019						I						
Testing normalization method	3/25/3019	4/8/2019												
Testing encryption	3/25/2019	4/15/2019												
Testing key generation	3/25/2019	4/28/2019												
Integration testing of final iteration of product	4/18/2019	4/28/2019												
Project Delivery	5/1/2019	5/1/2019												

Risks and Mitigation

- Integrating preexisting PUF library
 - Library is heavily hard-coded
 - Allocate time
- Inaccurate authentication
 - PUF must be at least 80% accurate
 - The library has multiple methods of normalization, authentication, etc.
- Implementing full-disk encryption
 - Android switched to file-based encryption
 - Workaround is possible through previous versions of Android

Setbacks and Mitigation

- Inaccurate authentication
 - Consulted Technical Advisor, Timothy Dee
 - Remove need for Python interpreter
 - Rewrite Python scripts
- Full-disk encryption infeasible
 - Linux Kernel library "fscrypt"
 - Encryption at application level

Lessons Learned

• Importance of facilitating communication early

• Exploring a provided product in the initial stages of planning before moving forward in the project lifecycle

Conclusion

What did we do?

- Yousef Al-Absi
 - Understanding Gradle
 - Assisted with PUF issues
 - Implemented DevOps
- Cole Alward
 - Implemented encryption
 - Assisted in application integration
 - Organized ticket flow
- Morgan Anderson
 - Implemented key generation
 - Assisted in application integration
 - Aided in technical writing and schedule organization

- Ammar Khan
 - Interacted with client
 - Assisted in rewriting interpolated pressure scripts
 - Aided others with PUF issues
- Justin Kuhn
 - Developing test plan
 - Conducted test integration
 - Assisted in rewriting interpolated pressure scripts
- Larisa Thys
 - Led semi-weekly meetings
 - Assisted in reworking authentication
 - Aided others with PUF issues

Current Project Status

Completed Milestones:

- Completed PUF research
- Completed initial design of project
- Integrated PUF into an application design
- Created application that encrypts and decrypts
- Maintained and updated PUF repository for future use

Going Forward

• Refine PUF library

• Extend Android lock screen API to integrate PUF library

• Implement kernel-level encryption to secure device at boot

Questions?