
sdmay19-23 presents:

Mobile, Biometric Bitlocker

Advisor and Client: Dr. Akhilesh Tyagi and Timothy Dee

http://sdmay19-23.sd.ece.iastate.edu/

http://sdmay19-23.sd.ece.iastate.edu/

Problem Statement

sdmay19-23: Mobile, Biometric Bitlocker

Problem:

● Android phones lack a Trusted Platform Module (TPM).

● Encryption keys must be stored somewhere somehow.

○ If the keys are stored on the devices, they can be found and

could fall into malicious hands.

Solution:

● Dynamically generate the key using a Physical Unclonable Function

(PUF).

Initial Conceptual Sketch

sdmay19-23: Mobile, Biometric Bitlocker

Python Scripts

Requirements Specification

sdmay19-23: Mobile, Biometric Bitlocker

Functional Requirements

● Application should encrypt and decrypt data without corruption.

● Only an authenticated user may access data.

● Encryption continues when phone is locked.

● Authentication required when an application is opened.

sdmay19-23: Mobile, Biometric Bitlocker

Non-Functional Requirements

sdmay19-23: Mobile, Biometric Bitlocker

● Application can store multiple user profiles.

● Response time for authentication takes no longer than 5 seconds.

● Gitlab repository should generate the application APK automatically.

● Only the creator can unlock their profile.

● Authentication accuracy of at least 80%.

System Design and Development

sdmay19-23: Mobile, Biometric Bitlocker

System Design

sdmay19-23: Mobile, Biometric Bitlocker

Python Scripts

PUF UML

sdmay19-23: Mobile, Biometric Bitlocker

PUF Library Decomposition

● Gestures API

○ Reads data from user-device gesture interaction

○ Creates user device pair

■ Provides challenges

■ User completes challenges

■ Challenges create profile

■ User-device pair created from list of challenges and their responses

● Interpolated pressure scripts

○ Performs various statistical analyses and operations

■ Normalized trace: represent each trace as a set of pressure values

at certain points

■ Authenticate based on normalized trace

sdmay19-23: Mobile, Biometric Bitlocker

Cryptography Block

sdmay19-23: Mobile, Biometric Bitlocker

● Android cryptography API is used for encryption

○ Have researched dm-crypt and fscrypt for kernel level

● Attempting to mimic Trusted Platform Module (TPM) on computers

● Client’s end goal is to encrypt at the kernel level like Windows Bitlocker (full-

disk encryption)

○ Started with application-level encryption

○ Progressively researched and experimented with encrypting at lower

levels

● Kernel-level encryption deemed infeasible

System Requirements

1. Software

a. Android Operating System

b. Minimum Version 5.1 (Lollipop)

1. Hardware

a. Should be able to be run on any hardware that is running required

Android Version

b. Should have a touch screen

1. Operating Environment

a. Nexus 7

sdmay19-23: Mobile, Biometric Bitlocker

Implementation

sdmay19-23: Mobile, Biometric Bitlocker

Demo

sdmay19-23: Mobile, Biometric Bitlocker

sdmay19-23: Mobile, Biometric BitlockerFinal Implementation

PUF Library

● Fixed implementation

● Fixed trace pattern

sdmay19-23: Mobile, Biometric Bitlocker

Encryption and Mobile Application

sdmay19-23: Mobile, Biometric Bitlocker

● Added ability to encrypt

and decrypt using a

dynamically generated key

● Added multiple profiles

Rationale

sdmay19-23: Mobile, Biometric Bitlocker

● PUF design decisions

○ The only decisions we were apart of was rewriting internal scripts.

○ We wrote internal Python scripts in Java.

○ To fix them and for easier use in kernel.

● Stopping at application level

○ We decided to stop at application level due to PUF library issues.

○ We were spending more time updating and fixing PUF than on

implementing other features.

○ No straightforward way to integrate at kernel level.

Testing, Validation and Evaluation

sdmay19-23: Mobile, Biometric Bitlocker

Test Plan

● Unit Testing

○ Designed simultaneously during development

○ Tests core functionality of a component

● Integration Testing

○ Created when combining between multiple components

○ Designed to test specific interactions between two components

● System Testing

○ Full operational behavior of the application with actual data

○ Largely performed towards the end of project

sdmay19-23: Mobile, Biometric Bitlocker

Sample Test Cases

● Only authenticated users may access user application data

○ User A has authentication profile

○ User A and B complete authentication trace

○ Only User A with an authentication profile is allowed

● Response time of authentication should take less than 5 seconds

○ User A completes authentication trace

○ Authentication process notifies user A results in under 5 seconds

sdmay19-23: Mobile, Biometric Bitlocker

DevOps

Tests:

● Pull Requests

● Merges to master

Builds:

● JAR (PUF)

● APK (App)

Deployments:

● Google Play Store

sdmay19-23: Mobile, Biometric Bitlocker

Source: https://www.testingexcellence.com/testing-in-devops/

https://www.testingexcellence.com/testing-in-devops/

Project and Risk Management

sdmay19-23: Mobile, Biometric Bitlocker

Project Schedule - Fall 2018
sdmay19-23: Mobile, Biometric Bitlocker

Project Schedule - Spring 2019
sdmay19-23: Mobile, Biometric Bitlocker

Risks and Mitigation

● Integrating preexisting PUF library

○ Library is heavily hard-coded

○ Allocate time

● Inaccurate authentication

○ PUF must be at least 80% accurate

○ The library has multiple methods of normalization, authentication,

etc.

● Implementing full-disk encryption

○ Android switched to file-based encryption

○ Workaround is possible through previous versions of Android

sdmay19-23: Mobile, Biometric Bitlocker

Setbacks and Mitigation

● Inaccurate authentication

○ Consulted Technical Advisor, Timothy Dee

○ Remove need for Python interpreter

○ Rewrite Python scripts

● Full-disk encryption infeasible

○ Linux Kernel library “fscrypt”

○ Encryption at application level

sdmay19-23: Mobile, Biometric Bitlocker

Lessons Learned

sdmay19-23: Mobile, Biometric Bitlockers

● Importance of facilitating communication early

● Exploring a provided product in the initial stages of planning before

moving forward in the project lifecycle

Conclusion

sdmay19-23: Mobile, Biometric Bitlocker

What did we do?

sdmay19-23: Mobile, Biometric Bitlocker

● Yousef Al-Absi

○ Understanding Gradle

○ Assisted with PUF issues

○ Implemented DevOps

● Cole Alward

○ Implemented encryption

○ Assisted in application integration

○ Organized ticket flow

● Morgan Anderson

○ Implemented key generation

○ Assisted in application integration

○ Aided in technical writing and schedule

organization

● Ammar Khan

○ Interacted with client

○ Assisted in rewriting interpolated

pressure scripts

○ Aided others with PUF issues

● Justin Kuhn

○ Developing test plan

○ Conducted test integration

○ Assisted in rewriting interpolated

pressure scripts

● Larisa Thys

○ Led semi-weekly meetings

○ Assisted in reworking authentication

○ Aided others with PUF issues

Current Project Status

sdmay19-23: Mobile, Biometric Bitlocker

Completed Milestones:

● Completed PUF research

● Completed initial design of project

● Integrated PUF into an application design

● Created application that encrypts and decrypts

● Maintained and updated PUF repository for future use

Going Forward

sdmay19-23: Mobile, Biometric Bitlocker

● Refine PUF library

● Extend Android lock screen API to integrate PUF library

● Implement kernel-level encryption to secure device at boot

Questions?

sdmay19-23: Mobile, Biometric Bitlocker

