
Mobile, Biometric Bitlocker

Project Plan

Team: 23

Client/Advisor: Akhilesh Tyagi

Yousef Al-Absi/DevOps, Cole Alward/Scrum Board Master, Morgan Anderson/Scribe, Larisa

Andrews/Scrum Master, Ammar Khan/Product Owner, Justin Kuhn/Testing Engineer

sdmay19-23@iastate.edu

 http://sdmay19-23.sd.ece.iastate.edu/

Revised: 12/02/18

mailto:sdmay19-23@iastate.edu
http://sdmay19-23.sd.ece.iastate.edu/

ii

List of Figures

Figure 1 Initial Design Overview ... 5

Figure 2 Statistical Concentration/Correction for a User Other Than Profiled User 7

Figure 3 Statistical Concentration/Correction for Profiled User .. 7

Figure 4 Process Diagram .. 12

Figure 5 Projected Fall 2018 Schedule .. 13

Figure 6 Projected Spring 2019 Schedule ... 13

Figure 7 Cost Table .. 16

file:///C:/Users/Morgan/Documents/college_courses/se491/reports/Project_Plan_V3.docx%23_Toc531564419
file:///C:/Users/Morgan/Documents/college_courses/se491/reports/Project_Plan_V3.docx%23_Toc531564422
file:///C:/Users/Morgan/Documents/college_courses/se491/reports/Project_Plan_V3.docx%23_Toc531564423

iii

Table of Contents

1. Introduction ... 1

1.1 Problem Statement ... 1

1.2 Purpose .. 1

1.3 Goals .. 1

1.4 Intended Users and Uses ... 1

1.5 Assumptions and Limitations .. 2

2 Project Deliverables and Specifications ... 3

3 Design ... 3

3.1 Previous Work/Literature Review ... 3

3.2 Proposed Design/System/Solutions .. 5

PUF Library Block ... 6

Cryptographic Block ... 7

3.3 Assessment of Proposed Solution ... 8

3.4 Validation and Acceptance Test .. 9

4 Project Timeline ... 11

5 Challenges .. 14

5.1 Cost Considerations ... 15

6 Process Details ... 16

6.1 Standards ... 16

6.2 Test Plan .. 17

7 Conclusion .. 18

8 Table of References ... 18

1

1. Introduction

1.1 Problem Statement

Asymmetric encryption is an encryption that allows individuals to hide their data and ensure it

is secure. Typically, files would be decoded using a public key and then encoded using a private

key. The private key is stored in a Trusted Platform Module (TPM), which is a cryptographic

module that enhances computer security and privacy. TPM chips are usually discrete chips

soldered into a computer’s motherboard, allowing for separation from the rest of the system.

Android phones, however, lack the TPM chip; therefore, encryption keys must be stored on the

device somehow. If the keys are stored on the devices, they can be found and could fall into

malicious hands.

1.2 Purpose

Our solution to the problem is to dynamically generate the key using a Physical Unclonable

Function (PUF). In doing so, the dynamically generated private key will not be stored anywhere

on the device and will be able to authenticate against the public key. The key can only be

generated at runtime, solving the issues of not having a TPM and storing the key.

1.3 Goals

Our goal is to develop an open source PUF library and integrate the library in the Android OS.

The library will be used to authenticate the user by dynamically generating a private key.

Encryption will occur when a user’s phone is shut down. Upon successful authentication on

boot, the user’s data will be decrypted.

1.4 Intended Users and Uses

The integrated PUF would be used by any person who has a phone with information that they

deem worthy of protecting.

According to Statista [1], 54.1% of people in the United States are using an Android. Therefore,

we would want to reach the Android market with our application since most people today have

2

data on their phone worth encrypting. For example, any employees within a company that keep

sensitive data on their phone may wish to keep their data encrypted in case their device is

stolen or compromised.

1.5 Assumptions and Limitations

Assumptions:

• The PUF library is working at the beginning of the second semester.

We have found several issues with the library received from our client. Our hope is to fix

the issues we have found in the library by the beginning of next semester so we can use

the working PUF to be able to develop our application.

• Android continues to support full disk encryption.

Android currently supports full-disk encryption. However, due to the legality associated

with encrypting the full-disk, Android is thinking of suspending support for it.

• Android allows developers to integrate in the boot sector.

There is a chance that Android will not allow us to integrate our application into the

boot sector. If this is the case, the application will not reach its full potential and will

have to reside at the application level.

Limitations:

• Nexus 7 hardware.

The Nexus 7 is the hardware the school provides and is the device the PUF was originally

designed on. The team decided it would be best to continue implementation on this

hardware. Unfortunately, this will provide some limitations. Nexus 7 is currently handles

API 23, which is a much lower API than the current Android version. This prevents us

from using some features that may be used in newer versions.

• Previous PUF library implementation and research.

3

We must use the previous implementation of the PUF. Whether we agree with the

research or not, it is imperative to use it within the project.

2 Project Deliverables and Specifications

Deliverables:

• A well tested PUF Java gestures library

o An open source library that should be released with unit tests and rewritten

methods. We need to provide a valid testing framework and an appropriate

architecture for the software.

o At least 70% test coverage

• A PUF based Android application

o The application should act as a lock screen whenever the phone is closed. It will

authenticate users by asking them to draw a shape, and it should only work for

the correct user. The application will also automatically start when the phone

boots.

o Authentication should happen within 5 seconds.

o The application should work on phones with 1 GB of RAM.

o Application size should not exceed 80 MBs.

Dates for deliverables detailed in timeline section.

3 Design

3.1 Previous Work/Literature Review

For our project, we will be working with existing software and integrating it into our project.

The given implementation is named PUF. Presently, the PUF creates a unique key from data

received from the user. It receives this data by displaying a pattern on the screen and forcing

the user to trace the design several times. From this data, a function will find a trace range the

user should always fall between. When the user attempts to draw the shape of the design

4

again, it will recognize the user. We received our knowledge of PUF through a paper published

by our client. [2]

When considering whether similar products are in the market, no comparable implementation

has been found. However, there are similar technologies available that offer different

functionalities. PUF is not a new way of securing a device. In fact, the most common use of this

technology for securing phones has been the fingerprint scanner, which is a property found on

most mobile phones. Additionally, the idea of an Android bitlocker is not new either. Having a

secure way to unlock one’s data once it has been encrypted has been a problem many are

trying to solve. Microsoft has a dated bitlocker that uses a key pair to encrypt and decrypt data.

Their solution utilizes a USB stick, a PIN or both to be able to authenticate the user. [3]

Despite its popularity, the fingerprint scanner is not always secure. In a study conducted by

Michigan State and New York University [4], researchers found there was a way to break a

finger print scanner 65% of the time. In a world where we are not authorizing all sorts of

payments from our phone, we think our solution would be better, for it is more unique in its

generation of a key and covers more reference points than a finger scanner.

We have discussed pure authentication, but what about the other side? We need to the ability

to encrypt mobile data at, ideally, a kernel level. Android already has the encryption level we

are hoping to implement; that is, Android provides full-disk encryption. When the phone is

turned off, all the functionality of the mobile device would be encrypted until the user is

authenticated at boot. [5]

5

3.2 Proposed Design/System/Solutions

FIGURE 1 INITIAL DESIGN OVERVIEW

For our project, some of the groundwork for the solution has already been completed. The

current solution is to develop an Android application using data generated from pressure

readings returned by the screen when the user traces a generated shape similar to the native

Android unlock pattern. The data would be generated by a Physical Unclonable Function (PUF),

which has already been implemented. As stated earlier, mobile devices lack the TPM chip which

can be found on most laptop computers. This enables full-disk encryption on laptop computers,

where each TPM has its own unique and secret RSA key that will decrypt the disk. Since each

chip has its own unique RSA key, this makes it an extremely secure method for encryption. With

the lack of the TPM chip on mobile devices, there is a lack of such a secure method for

encryption. Ideally, the PUF will emulate the security of the TPM chip by dynamically generating

the key every time, thus eliminating the need to save it. The key generation will occur when the

user traces a pattern generated by the application. When provided with the pattern, the

application requires users to trace it a certain amount of times depending on the selected user

6

and selected strength (i.e., the higher the strength, the higher the number of traces). Doing so

will develop a profile for the user based on the patterns for pressure and speed the user

exhibits for that particular pattern. Furthermore, the hardware for no two devices is the same,

even among devices of the same model. Therefore, the pressure readings will vary from screen

to screen and, thus, importing a profile to another device should result in failure even if the

same person traces the pattern on the new device. Therefore, this implementation will lead to

both user authentication and device authentication, leading to maximum possible security with

the given hardware.

PUF Library Block

The pattern tracing and user authentication features are all encapsulated within the “PUF

Library” subblock in Figure 1. These features have all been implemented; however, they need

to be updated, reworked and thoroughly tested before we can deem them functional or

reliable. The implementation of the pattern tracing and user authentication system currently

has the user trace a given pattern X amount of times when a new profile is created. This pattern

is referred to as a “challenge,” and it is created by referencing the Gestures API seen in Figure

1. As the user completes the challenges, the Gestures API will normalize the user responses and

create a profile associated with that challenge. This profile will then contain the challenge along

with its list of normalized responses, which can be authenticated against. The number of

responses varies depending on what the user has set for their strength setting. The higher the

strength, the more responses required and the more precise the authentication will be. Once

the user has completed all of the required challenges and the profile has been generated, the

API will be able to create a User-Device Pair, which means that the authentication system

should now be able to recognize the user whenever they trace the patterns.

Once the User-Device Pair has been created and the user is now trying to authenticate by

tracing the challenge, the application will use its library of Python Scripts, shown in Figure 1, to

run some statistical analyses on the generated response. Over the course of the initial traces

during profile creation, the application developed an average user pressure trace for

authentication. There are scripts in the Python Scripts Library that will take this average trace

and find a line that is 2 deviations above this average and 2 deviations below this average, thus

7

creating a zone, or distribution, of acceptance. When the user tries to trace the pattern later,

the trace they generate will be evaluated by a Python script at 32, 64 or 128 points along the

trace, depending on the settings and the length of the trace. From these points, a certain

percentage needs to fall within the zone of acceptance for the trace to pass and user to be

authenticated. This is illustrated in Fig. 4 and Fig. 6 from Dr. Akhilesh Tyagi’s team’s paper. [2]

Figure 2 shows a trace that passes as every point fell within the zone of acceptance whereas

Figure 3 shows a trace that failed as 22 out of the 32 points fell out of the zone and failed.

FIGURE 3 STATISTICAL CONCENTRATION/CORRECTION

FOR PROFILED USER

Cryptographic Block

One major component of our application that has yet to be developed is the Cryptographic

Block, which will be responsible for the encryption and decryption of our data. We plan to use

Android’s own Cryptography API to encrypt and decrypt the device’s file system. As shown in

the block diagram, once the user trace is authenticated through the PUF Library, the application

will enter the cryptographic block and decrypt the file system. If the user is not authenticated,

then the file system should remain encrypted. While we understand the high-level functionality

we want, there is still more research that needs to be done in this area if we are to reach our

end goal.

Currently, the goal of the solution is to integrate this application into the Android OS, so we

could have application level encryption. This may look like a series of patterns that you must

trace and pass when you open a certain application. If we can get this functionality in place, we

FIGURE 2 STATISTICAL CONCENTRATION/CORRECTION

FOR A USER OTHER THAN PROFILED USER

8

will begin to move the encryption further back into the boot up process. Our end goal is to be

encrypting and requiring user authentication at the kernel level before the OS is booted, which

is like BitLocker on Windows computers. However, the feasibility of this solution is currently in

question, and research is being done to see whether we can implement this feature at all. We

have not explored any alternatives to this solution because this project is a research project

whose purpose is to examine the feasibility and security of using a PUF in Android phones to

emulate the encryption behavior of TPM chips found in laptop computers.

3.3 Assessment of Proposed Solution

The proposed solution has a strength that most other encryption methods contain: PUF

implementation. When functional, PUF allows some of the most effective authentication

available, as only the user on their exact phone has access to their application data. Having data

saved at an application level allows only specific data to be encrypted, which can be a benefit if

there are certain file systems of the device that must stay unencrypted for general functionality

to resume. However, this concept could also be perceived as a weakness, for the user’s

operating system would not be given the same protection, making the device susceptible to

some attacks.

An alternative solution to consider is boot and kernel level encryption, which offers even lower-

level security for the entire system. However, the trade-off with this design is that several usual

background applications and general functionalities of the device would need constant

authentication from the user to be allowed to operate normally, which is not very user-friendly.

As ideal as this solution is from a security standpoint, it may not be feasible to make changes to

the Android kernel, and it may have to be partly implemented as a surface application that

starts as soon as boot sequence ends.

A weakness of tying the authentication system to the silicon level of the hardware device,

which is used for advanced security, is the limited support for the models of devices supported.

The usage of this application requires the user to use a specific hardware model and they are

tied to that exact device to remain secure. This creates not only a higher cost for those who do

not already own a supported device but costs the project more as well to add support for

9

multiple models, for each hardware device requires an individual design of the authentication

system.

3.4 Validation and Acceptance Test

Each project requirement requires a test case for validation alongside passing the acceptance

testing criteria to be considered sufficiently implemented:

Functional Requirement 1: Only a user with an authentication profile may gain access through

 to user data.

Test Case:

1. User A creates an authentication profile on the test device.

2. At least two different participants, including User A, attempt to access an application

which requires authentication to access user data.

3. Each participant traces the authentication pattern.

Acceptance Test:

No person other than User A may unlock or decrypt user data via trace authentication

through their authentication profile. Requires at least a 95% acceptance rate while

maintaining less than 1% false positive results of unauthorized users gaining access.

Functional Requirement 2: Device cannot be shut down when application is encrypting.

Test Case:

1. User A has an existing profile on the test device, or otherwise creates one.

2. User A shuts down and starts up the device.

3. During startup, User A attempts to shut down the device at boot.

10

Acceptance Test:

User A should be prompted with a message notifying that the device cannot be shut

down by normal means until the encryption steps at boot for the application complete.

Non-Functional Requirement 1: The application should be able to store multiple user profiles.

 (Scalability)

Test Case:

1. User A creates a user profile with the application.

2. User B creates a separate user profile with the application.

3. Both users attempt to access user data one at a time, and each trace the

authentication pattern when prompted.

Acceptance Test:

Both User A and User B should be properly authenticated through their respective

authentication profile and are given access to the user data. At least 95% acceptance is

expected while less than 1% of the time providing access to the user via another’s

authentication profile.

Non-Functional Requirement 2: Response time of the authentication process should be no

 more than 4 seconds. (Performance)

Test Case:

1. User A has an existing profile on the test device, or otherwise creates one.

2. User A attempts to access user data and traces the authentication pattern when

prompted.

11

Acceptance Test:

Once User A has completed tracing the given authentication pattern, the application

should begin and complete the authentication process as well as notify the user of the

result within 4 seconds. Requires 95% acceptance to be deemed successful, as the

application or device is occasionally expected to see slowdowns.

All acceptance test cases require manual system testing utilizing the hardware device. However,

validation testing when completing an issue can be enough with Java Virtual Machine unit tests,

depending on the natures of the component. Unit testing follows the discretion specified in the

test plan.

4 Project Timeline

The schedule for this project is based on the rolling wave planning technique, which enables the

team to discuss and make decisions concerning the project as it progresses. Tasks that should

be completed soon are discussed in-depth, whereas tasks scheduled for later dates are

discussed in a more abstract, high-level manner. The current team is composed of individuals

who have the necessary knowledge of the project parameters, hardware and software used in

the project to make educated estimates for the projected times. Once the current tasks are

completed and it is time to analyze the subsequent tasks, dates may be modified depending on

the coming in-depth discussions and knowledge of the team.

The following diagrams present the process (Figure 4) and projected schedule (Figure 5 and

Figure 6) our team will utilize over two semesters, respectively. Regarding Figure 5 and 6, we

decided to organize our project into five phases: research, design development, testing and

delivery.

12

Research

Research involves familiarizing oneself with the
story at hand. Research documentation or story
tickets are filled out with appropriate, or
meaningful, information to improve understanding
throughout the team and help guide progress.

Design

In the design stage, research is considered to make
decisions about how to go about implementing the
project s requirements. Here, individuals generate
documentation that can be easily interpreted by
the client to gain approval for design decisions.

Development

The development stage is where individuals will
implement functionality according to the approved
design plans for each requirement.

Test

Testing involves verifying that functionality meets
acceptance criteria, performs correctly and works as
the client expected.

Solution

A solution has been achieved for a desired feature.

Consultation

Consultation involves interacting with the client to
obtain information (e.g., requirements) and
recommendations concerning the project. It is the
stage where action plans and stories are conceived
and scope is developed.

Has the client
approved of the

potential design?

Yes

Redesign

When the client does not approve of the team s
design decisions, the team must regroup and rethink
the way they are addressing the problem.

No

Are any design
alternatives

known at this
time?

Does the team
believe doing

more research
will help in

restructuring the
design plan?

No

No

Yes

Yes

FIGURE 4 PROCESS DIAGRAM

13

FIGURE 5 PROJECTED FALL 2018 SCHEDULE

FIGURE 6 PROJECTED SPRING 2019 SCHEDULE

14

A majority of our project in the fall 2018 semester (Figure 5) consists of researching significant

concepts essential to developing our encryption application and establishing a design to guide

the team in the development phase. Specifically, the team decided to spend the first two

months getting familiar with the concept of a PUF, encryption techniques and the PUF

applications provided by our client. Doing so ultimately assisted in creating an appropriate

design plan for implementation. As the research and design phases progressed, our

investigations unfortunately showed that the library used by the PUF applications contained

errors. As a result, the team agreed that a few milestones hoped to be achieved within the first

part of the development phase include furthering our understanding of fundamental concepts

required for implementation of our client’s desired application, fixing the broken algorithms

within the provided PUF library and implementing a working encryption application using PUF

at the application level.

In terms of the spring 2019 semester (Figure 6), the schedule is extremely basic. Since we are

using the rolling wave planning technique, the schedule will continue to change as we learn

new information about project. For this reason, the present spring schedule outlines the

fundamental goals we hope to attain, including the completion of the development phase by

implementing a working encryption application using PUF at the kernel level, ensuring the team

finds and resolves all bugs within the application and, finally, delivering the product itself.

5 Challenges

The feasibility of our project is undetermined because it is unknown whether encryption can be

performed at the kernel level. Android does not use encryption at the kernel level in its own

releases, so it may be the case that it is infeasible for them to implement it. However, it is not

known whether this is the case or not. It may be possible to perform this encryption, but

functional reasons prevent this from being implemented, such as repetitive authentication.

There are risks involved with integrating the PUF library into a brand-new solution. No member

on the team has had experience with the library or the concept of physically unclonable

functions in general. We have witnessed issues with an existing application that uses the PUF

library, so it has already been demonstrated to be susceptible to failure.

15

However, given our previous work with each other and progress already completed, we do not

believe the project to be outright infeasible. Most of our project will be working with Android,

which we all have experience working together on. We have created a user application, which

the initial goal of this project calls for. The project also involves operating system and kernel

levels of programming, and most of us have taken or are taking “Introduction to Operating

Systems” or “Linux Operating Essentials,” which provide a good foundation for the

programming skills and knowledge required. The project is an extension of a project that has

been in progress for a few years now, so there is already lot of research and development to

use as resources, and the problem space has been thoroughly explored. There are several

academic articles written about PUF, justifying its practicality.

There also exist risks pertaining to authentication. Although the PUF library generates the keys

used for authentication, the application that uses it must accurately authenticate a user by

deciding whether a user sufficiently replicated a key. Deciding what constitutes as enough

carries risk into the equation. To make the application user-friendly, it cannot produce false

negatives when authenticating a user. To make the application secure, it cannot produce false

positives, which will jeopardize data that is supposed to be secure. This will require thorough

testing as well as statistical development to ensure accurate authentication.

5.1 Cost Considerations

Software

The project primarily utilizes open source software that incur no cost. We are using GitLab as

version control, but there are free alternatives.

Hardware

To accurately test the application, the project requires physical devices that can run Android.

For this reason, we have acquired two Nexus 7s from the Electronics Technology Group. The

cost for a Nexus 7 is roughly $199, making the total cost of the project $398.

16

 Device Cost

1 Nexus 7 $199

2 Nexus 7 $199

 Total: $398

FIGURE 7 COST TABLE

6 Process Details

Our process will consist of establishing functionality at the lowest level of security and later

implementing the solution at the highest level. Our initial version will establish success at the

user application level, at which point we will advance to explore a solution utilizing higher

security. This may or may not be the kernel level. We will use the information learned from

completing the initial version to assess what the next step should be. The goal is to encrypt a

key at the kernel level.

6.1 Standards

We are not working in a traditional lab environment for this project, and most of our work is

completed outside of a collaborative environment. Most of the work is going to be software

development, and we have decided to follow the Agile model for development. All our

standards and protocols, such as sprints, sprint planning and meeting practices are adapted

from the Agile model. As a result, our standards and practices should be approved by IEEE, and

none of them should be considered unethical by any organizations.

We found that the Agile model would be the best model to follow for our project because, for a

project of this size, we want to make continuous incremental updates to the design rather than

large infrequent changes. By making smaller, more frequent changes in the Agile model, we are

able to ensure every addition to our product is thoroughly tested and working properly.

Furthermore, if any change or addition is made, the Agile model provides flexibility; it is very

easy to roll back to the last working state without losing a lot of work, whereas models

17

requiring individuals to do large chunks of work at a time do not provide this. The state and

quality of the PUF Library we received at the beginning of the semester is a testament to how

important it is to follow the standards of the Agile Model. Many errors exist, and the errors are

interconnected and layered. In other words, solving one error often reveals another error. We

can avoid issues like this in our future development and maximize our implementation quality if

we simply follow Agile coding practices, such as Test-Driven Development, making incremental

changes instead of large ones, having code reviews whenever code is being merged to master

and having 100 percent test coverage for code.

6.2 Test Plan

As code is created, developers must create unit tests simultaneously to test their components

and ensure the expected behavior is operational and the number of bugs introduced to the

repository is minimal. The longer a bug or malfunction is present, the more difficult the bug is

to fix since code may build on top of it. Unit tests will be in a parallel directory with similar path

and test file names as the actual code. While no minimum or maximum amount of unit tests are

required, all core functionality and common edge cases should be unit tests.

As core components are combined, integration tests should be designed to show the

implementation of other targeted components delivers results as expected. These tests may be

created by collaborating developers or by the test engineer. These tests should focus on core

functionality and interactions the connecting components share. They are often still separate

from fully operational actions and focus on specific functionalities.

System tests should demonstrate fully operational tests between multiple components using

actual data. These should demonstrate intended functionality, and, for our purposes, some may

even be end-to-end tests. These tests will be developed by either collaborating developers in

need of data from a live environment or by the test engineer to show operational system

behaviors.

18

7 Conclusion

Our goal for this project is to integrate existing software that details a PUF into an Android-

based OS application. We will do this by research, design, development, testing and conferring

with our client. We think this is a worthwhile project because the use of a pressure PUF as a

bitlocker for a phone has not been done and will add needed security. We hope to complete

the application in its entirety by the end of spring 2019.

8 Table of References

[1] "Subscriber share held by smartphone operating systems in the United States from 2012 to 2018,"

Statista, 2018. [Online]. Available: https://www.statista.com/statistics/266572/market-share-held-

by-smartphone-platforms-in-the-united-states/. [Accessed 1 12 2018].

[2] A. T. Ryan A. Scheel, "Characterizing Composite User-Device Touchscreen Physical Unclonable

Functions (PUFs) for Mobile Device Authentication," in Proceedings of the 5th International

Workshop on Trustworthy Embedded Devices, Denver, Colorado, USA, 2015.

[3] B. Lich, L. Poggemeyer, J. Groce and J. Hall, "BitLocker," 15 October 2017. [Online]. Available:

https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-

overview. [Accessed 26 October 2018].

[4] J. Titcomb, "Why your smartphone's fingerprint scanner isn't as secure as you might think,"

Telegraph Media Group Limited, 2017.

[5] "Android Source," Android Open Source Project , [Online]. Available:

https://source.android.com/security/encryption/full-disk#how_android_encryption_works.

[Accessed 26 October 2018].

