
Characterizing Active User-Device Physical Unclonable
Functions (PUFs) based on Mobile Device Touchscreen

Ryan A. Scheel
Electrical & Computer Engineering

Iowa State University
Ames, IA, USA

scheel.ryan@gmail.com

Akhilesh Tyagi
Electrical & Computer Engineering

Iowa State University
Ames, IA, USA

tyagi@iastate.edu

ABSTRACT
Mobile systems have unique security requirements. An atomic
unified signature of the user and the device is more useful
than just a user password or only a device biometric. We
propose a physical unclonable function (PUF) derived from
the touch screen of a mobile device. We characterize such a
unified PUF for both its variability and reproducibility. For
the (same device, same user, different challenge), (same de-
vice, different user, same challenge), (different device, same
user, same challenge), we benefit from as large a variability
in the response as possible. On the other hand, for (same
device, same user, same challenge), we want perfect repro-
ducibility in the response. We show 60+ bits Hamming
distance in the unified PUF responses of length 128 bits
when variability is expected. We illustrate 0 bits of error
in reproducibility scenarios through the use of an innova-
tive statistical concentrator serving the role of ECC (error
correcting codes) in traditional PUFs. We also demonstrate
the promise of these PUFs to serve as biometric hardware
pseudorandom number generators (PRGs) by putting them
through Montreal TESTU01 suite of tests. Our best PUFs
pass all the tests except occasionally failing 3. This PUF
was implemented on Nexus 7 devices running Android.

Keywords
physical unclonable function (PUF), mobile device authen-
tication

1. INTRODUCTION
Mobile devices are becoming the primary user interface ter-
minals of the modern world with the computing servers in-
frastructure being pushed to the cloud. With wearable de-
vices on the horizon, the number of mobile devices per capita
is likely to explode.

Securing a mobile device is significantly more challenging.
Physical possession allows for side-channel attacks. Authen-
tication is more difficult since device connectivity is not al-

ways available due to mobility. Not being able to rely upon
constant connectivity also reduces the options available to
implement a mobile root-of-trust.

A physical unclonable function (PUF) [11] provides a device
chip-set biometric which can be wrapped into various cryp-
tographic protocols. A typical PUF is based on the inherent
variability in the silicon fabrication process. The dopant dis-
tribution and lithographic etching are examples of physical
phenomena that lead to individualized energy-delay profile
for each transistor. The same transistor in two different
chips, even when fabricated on the same wafer, exhibits its
individuality. Such biometric individuality can be captured
as a challenge-response function block. Typical PUF im-
plementations use among others a cascaded ring of inverters
where these delay variations are amplified. Challenges result
in a sampling of a specific bit in this ring oscillator. Another
schema sends a 0 down one path and 1 down another. At
each stage, the two bits carry on in straight paths or switch
over their paths based on a challenge bit. At the last stage,
an arbiter determines whether 0 or 1 bit won the race, which
also becomes one bit of the response.

These schemes do well in capturing unique physical attributes
of the physical device. A mobile device however unlike a
cloud server or a desktop client is too closely tied to a user.
From secure services perspective, it is difficult to separate
the user from the device. A device in the hands of Alice may
be eligible for a different set of services than when in the
hands of Bob. What we need as a PUF is something which
generates a response from a challenge based on the entan-
gled biometric of both the user and the device. Such en-
tangled, user-device (UD) PUFs are the focus of this paper.
Specifically, we establish an inviolable, atomic, combined
user-device (UD-)identity. The inviolability comes from the
physical layer of the silicon in a manner similar to biomet-
rics. Atomicity comes from the atomic granularity of user
and PUF composition.

Contributions:. (1) Establishing that an entangled PUF
can be realized from the combined biometric of silicon and
of a human user.
(2) Exploring the design space for a touch screen entangled
PUF to capture design parameters that provide the requisite
variability and reproducibility.
(3) Establishing the pseudo-random number generator prop-
erties of the proposed UD PUF. This provides the security



assurance that the UD PUF is not easily modeled.

Touch Screen as the User Device Entangler:. In today’s
mobile devices, many sensors exist, explicitly designed to in-
teract with the user. If these sensors exhibit their own semi-
conductor unique identities, they constitute a good initial
candidate set for UD PUF.

Touch screen is one such plausible PUF sensor. Capacitive
or resistive touch screens use an array of electronics capable
of measuring capacitive or resistive change induced by the
touch. These CMOS transistors exhibit the same variability
that has been exploited in the traditional silicon PUFs. In
addition, there is sensing circuitry that detects the row and
column number where the touch-induced capacitance or re-
sistance change occurs. The sensing logic is replicated into a
grid of touch screen regions so that the events in multiple re-
gions can be detected in parallel. The size of this grid keeps
increasing to support fine grained multiple gestures. This
sensing logic is another source of variability in the touch
screen based PUFs. It is plausible that the same silicon fab-
rication processes that lead to variability in the traditional
silicon PUFs will induce similar variability in the measured
current and voltages detecting touch in touch screens.

The challenge can be a simple line segment drawn on the
screen. The user is asked to trace it. Android framework
generates a sequence of Motion Event objects in response to
such tracing. The Android framework includes a class Mo-

tionEvent (http://developer.android.com/reference/android
/view/MotionEvent.html). This class, among many other
methods, includes a method final float getPressure()

which returns a value between 0 and 1. On a capacitive
touch screen, it stands to reason that the device level vari-
ability must exist for the same reasons as for the classical
silicon PUFs. The doping levels of capacitive permittivity
layer will have the same statistical variation in the fabrica-
tion process. Similarly, the capacitance measurement cir-
cuits in these screens have the same statistical delay (or
current level) variance as in silicon PUFs. The getPres-

sure() method should reflect such per device variability in
the pressure measurement.

The other desirable characteristic of pressure returned by
getPressure() method is that it entangles the user behavior
and the device biometrics in an atomic, inseparable manner.
Part of the pressure reading is determined by the transistors
and capacitors embedded within the touch screen. Part of
the pressure reading is influenced by the user behavior, how
s/he traces a path: how much physical pressure, how closely
is the challenge line segment followed in the response. There
is no non-trivial deterministic quantitative model to sepa-
rate the user pressure contribution from the device pressure
contribution.

Variability and Reproducibility of Touch Screen UD-
PUF:. Any PUF is designed to give a unique, variable re-
sponse to a unique challenge. The variability aspect quanti-
fies how different the responses are over two different chal-
lenges - we could even specify a metric capturing some kind
of distance within the challenge space. For a UD-PUF f ,

one aspect of its variability for instance is captured by the
following equation

∑
i,j,kHD(f(Ci, Uj , Dk), f(C′i, U

′
j , D

′
k)).

f(Ci, Uj , Dk) captures the UD-PUF f response on a chal-
lenge line segment Ci, traced by a user Uj , on device Dk.
The function HD() measures usual Hamming distance of
two binary response strings. We expect (different challenge,
same user, same device) scenarios HD(f(Ci, Uj , Dk),
f(C′i, Uj , Dk)) to generate variability with nonzero response
Hamming distances. We will similarly expect variability in
(same challenge, different user, same device)HD(f(Ci, Uj , Dk),
f(Ci, U

′
j , Dk)) and (same challenge, same user, different de-

vice) HD(f(Ci, Uj , Dk), f(Ci, Uj , D
′
k)) scenarios. Ques-

tion is how much variability is desirable? Should the aver-
age Hamming distance in HD(f(Ci, Uj , Dk), f(C′i, Uj , Dk))
equation be half the response length N? We characterize
this variability in this paper for touch screen based UD-
PUF. An interesting, somewhat unexpected, lesson learned
is the effect of quantization hysteresis on the variability.

For the (same challenge, same user, same device)
HD(f(Ci, Uj , Dk), f(Ci, Uj , Dk)) scenarios, we expect re-
producibility. In other words, the response Hamming dis-
tance should be 0. This is more difficult than it seems. In
the classical silicon PUF implementations, the reproducibil-
ity violations occur when chip’s operating conditions such as
temperature are different than its characterization operating
conditions. With UD-PUF this is further complicated by the
fact that the human user behavior- path tracing, is rarely
identically reproduced. We characterize the reproducibility
error rate for the proposed UD-PUF. We then introduce a
statistical concentrator ECC (error correcting concentrator
like an error correcting code in coding theory) to generate
close to perfect reproducibility.

Paper Organization:. Section 2 presents related work in
the area. An outline of a conceptual framework to use the
UD-PUF for device authentication and other secure services
is given in Section 3. Section 4 presents our results on UD-
PUF variability characterization. The reproducibility re-
sults are given in Section 5. The pseudo random number
generator properties of UD-PUF are assessed in Section 6.
Finally, Section 7 concludes the paper and Section 8 offers
thoughts on the future work.

2. RELATED WORK
Physical Unclonable Functions (PUFs) are like biometric of
silicon - unique to each individual chip so as to serve as
an identity, with a random distribution. The delay of a
fabricated silicon transistor is a random function despite an
identical mask level geometry due to random distribution
of dopants and lithographic diffraction. These statistical
variations are large enough to differentiate chips from the
same wafer. Many different kind of silicon PUFs have been
proposed [15], [5], [6], [17], [7], [3], [11], [16]- ring oscillator,
SRAM memory cell, arbiter, latch and flip-flop.

Such physical layer functions need both (1) per chip vari-
ability and (2) same chip reproducibility. The variability
ensures that distinct devices produce different outputs on
the same input. Reproducibility on the other hand is needed
for predictability and determinism in the device authentica-
tion behavior.



These PUFs have been deployed in many applications [11],
[3]. Their security has also been analyzed in many scenarios
[8], [13].

A modern mobile device has an increasingly larger num-
ber of sensors - mostly to introduce new UI paradigms. It
is not uncommon to have accelerometer, gyroscope, LCD
touch screen, temperature and humidity sensor, barometer,
RGB intensity sensor, proximity sensor, and gesture sensor.
All these sensors are rooted in some kind of physical layer
based on some analog activity. If these activities arise from
some electrical phenomena based on capacitances, induc-
tances and resistances, it is likely that the fabrication pro-
cess has inherent randomized statistical distribution. Any
of these activities or a combination thereof can constitute a
viable atomic user-device identity.

Some work has started within the last year along this line
of thought. All of them seem to still be aiming to estab-
lish a unique PUF like fingerprint for the device. A unified
atomic user-device identity is not the goal. Dey et al. [4] use
an accelerometer as the device fingerprint. The challenge is
certain level signal applied to the vibrator, which activates
the accelerometer to generate a response signature. Aysu et
al. [1] use Micro Electro Mechanical Systems (MEMS) as a
fingerprint PUF for low cost embedded solution in place of
relatively more expensive ring oscillators or arbiters. More
recently, Boneh’s crypto group was in news [2] for develop-
ing fingerprinting techniques for mobile devices. There are
no technical articles on this work yet. The San Francisco
Chronicle talks about the challenge being flipping over a
mobile device, and the measured response or fingerprint is
the accelerometer activity. This could have elements of a
combined user-device fingerprint - however, it is presented
as a device fingerprint with the goal of masking out the user
variance. Liu at al. [10] have a purported goal of creating
a new UI by acknowledging and computing accelerometer
activity driven gestures. Their hypothesis is that such ges-
tures give many more degrees of freedom than the traditional
gestures giving rise to richer user interfaces.

SenSec [19] builds a Markov process based predictive model
from multiple motion sensor data such as accelerometer and
gyroscope to classify it as a specific user. Napa et al. [14] use
the unique finger placement biometric of a user to charac-
terize a user on the basis of the placement of multiple fingers
for multiple gestures on a touch screen. Zahid et al. [18] use
the keystroke events time separation as a user biometric for
authentication.

None of these research efforts have goals identical to ours -
that of establishing an atomic user-device identity, and its
applications.

3. MODEL, SCHEMA, AND MOBILE SE-
CURE SERVICES

Model:. The UD-PUF consists of a characterization/profiling
phase followed by the deployment phase.

During characterization, for a given user-device pair, a broad
set of challenge-response pairs is collected - CRSET (Ui, Dj) =

{(Ci,j,k0 , Ri,j,k0), (Ci,j,k1 , Ri,j,k1), . . . , (Ci,j,kl , Ri,j,kl)}.

Each challenge Ci,j,km can be a line segment, a series of
points specifying several connected line segments, a seed
point (xi, yi) and a curve generation schema such as Poincare
function or fractal curves. The main expectation is that a
challenge be a path long enough to generate a response of
desired length (128-256 bits for AES keys, 1024-2048 bits for
RSA keys). It may also be feasible to allow the user to trace
their own repeatable, personalized path such as a signature.

The proposed UD-PUF layer converts a given challenge Ci,j,kl
into the corresponding response through a reproducible pro-
filing phase - Ri,j,kl = UD − PUFf (Ci,j,kl , Ui, Dj).

Who should be holding the pre-characterized challenge-response
set CRSET (Ui, Dj)? This entity necessarily serves as a
root-of-trust for all the transactions based on this set. Based
on the applications that need to be supported, a third party
certification authority could be such an entity. Google Wal-
let like application can use such a scenario to verify the
atomic user and device identity before providing services.
The local root of trust within the device could be this en-
tity to support UD-PUF based user-device unique signa-
tures/passwords. Note that how to wrap the challenge-
response set CRSET (Ui, Dj) securely within such a root of
trust, and the corresponding secure protocols for the com-
munication between the cloud services layer, the mobile de-
vice, and a third party certification authority (CA) are not
the focus of this paper.

The scenarios plausible for UD-PUF based authentication
include the following:

1. Cloud based secure services maintain a user-device do-
main oriented access control layer. These domains may
or may not have partial orders defining access control.
A third party CA may be needed as a root of trust to
hold the challenge-response set CRSET (Ui, Dj). Note
that it may be feasible to wrap this third party CA into
the secure services provider.

2. Replace the classical password based authentication
with a UD-PUF challenge response mechanism to ac-
cess the device or device based apps.

3. UD-PUF could also be composed with the software
based cryptographic primitives such as pseudo-random
number generator, encryption and hash to make these
primitives more robust.

4. UD-PUF VARIABILITY
We have conducted an evaluation of UD-PUF variability
on 10 Nexus 7 devices with 3 distinct users. We wrote an
Android app to collect the following data. The challenges
are the paths drawn on the screen which are generated by
a simple program that just uses Java libraries to randomly
generate 4 (x, y) pairs which are connected into a convex
path. The algorithm makes sure that all the (x, y) pairs are
at least a minimum distance from each other. The paths
are seeded with an incrementing count before each use to
ensure easy reproducibility for each individual path. The
LHS figure in Figures 1 & 2 shows the generated path in



Figure 1: Path Challenges and Pressure Responses

dashed lines and the user traced path in solid lines for two
different users and devices. Overall, for each of the 10 Nexus
7 devices, for each of the 3 users, 100 paths were drawn and
traced for a reasonably sized data set.

In Android, a user traced path is returned as a sequence
of class MotionEvent objects. Part of this class declaration
looks as follows:

public final class MotionEvent

extends InputEvent

implements Parcelable

final int getAction()

final float getAxisValue(int axis, int pointerIndex)

final float getPressure()

Without having to modify the Android framework, getPres-
sure() seems like a good candidate for the source of a PUF,
since it returns an analog float value. Each MotionEvent

object carries a path sequence number, and its (x, y) coor-
dinates among other information.

How to generate a challenge?:. The raw analog pres-
sure values are between 0 and 1 as a float. We need to
convert them into a binary sequence. Each path can re-
sult in anywhere from 150-400 MotionEvent objects being
sampled. The Android events layer chooses a sampling fre-
quency on the basis of its own loading. In Figures 1 & 2

RHS, solid blue line shows the raw pressure data which is a
jagged graph.

Arbiter:. We need to convert this pressure value sequence
into a binary response sequence. One obvious approach is
to generate a reference pressure line. Any pressure above it
is interpreted as a 1, and every thing below is interpreted as
a 0. The choice of an arbiter reference line is what we call a
quantizing mechanism. There are many possible approaches
to quantizing this data.

average based arbiter: A simple approach is to take the
average of all the pressure points. If a given path
point’s pressure exceeds this average, it is quantized
as a binary 1, otherwise it is quantized as a binary 0.
This has the advantage of resulting in responses that
have roughly equal 0’s and 1’s - one of the required
properties of a random string.

This quantization however has many runs of 0’s and
1’s since as seen in Figures 1 & 2 RHS, entire path seg-
ments are above or below the flat dashed blue pressure
average line. Such 0 and 1 runs are bad if these re-
sponses are to be pseudorandom. As we discuss later,
these strings fail 11 out of 26 PRG (pseudo-random
generator) tests.

moving average n = 5 based arbiter: An alternate is to
create a low-pass filter by keeping an n-size moving
window. A running average in this n-window is main-



Figure 2: Another Path Challenge and Pressure Responses

tained. The quantization of the Point pm is done based
on the n = 5 moving average avg5m = (pm−1+pm−2+
pm−3 + pm−4 + pm−5)/5 where pi is the pressure at
Point i. If the pressure pm ≥ avg5m then it is quan-
tized to 1, else it is quantized to 0. This arbiter passes
almost all tests for PRG. In other words, a PRG based
on this UD-PUF behaves like a cryptographic pseudo-
random number generator. Note that this is a signifi-
cantly stronger property than any of the silicon passive
PUFs [15], [5], [6], [17], [7], [3], [11], [16] have been able
to show. Most of the physical PUFs can best show a
non-zero Hamming distance between two supposedly
different responses. They have to use a cryptographic
hash function such as SHA [12] on the PUF response
to get any kind of pseudo-randomness. The red solid
line in Figures 1 & 2 RHS shows the n = 5 quantiza-
tion. Note that this line closely hugs the original raw
data curve.

moving average n = 10 based arbiter: This quantization
is similar to the preceding n = 5 quantization except
that it uses the moving average of the preceding 10
points. This n = 10 moving average is shown as
green/blue solid line in Figures 1 & 2 RHS. It does
worse than n = 5 quantization on PRG tests.

cumulative moving average based arbiter: This is the
extreme of the moving average with maximum damp-
ening - the average of p0, p1, . . . , pm−1 is used to quan-
tize pm. This is shown as purple solid line in Figures 1
& 2 RHS. It has longer 0- and 1-runs than the n = 5
and n = 10 moving averages and hence does worst

among the moving average quantization approaches on
PRG tests. However, it still performs better than the
flat average based quantization.

Variability in UD-PUF Responses:. Recall that the
(same user, same device, different path), (different user,
same device, same path), and (same user, different device,
same path) should result in different responses. How much
variability exists in these scenarios?

There are two ways to evaluate this variability. In one
case, we can just look at Hamming distance between the re-
sponses. In another, we can try to assess if the response out-
puts behave like a pseudorandom sequence. The second case
endows more robustness and more desirable cryptographic
properties on these PUFs.

Hamming Distance between UD-PUF Responses:.
We measured average Hamming distance between responses
within the scenarios where variability is expected such as∑
i,j,kHD(f(Ci, Uj , Dk), f(C′i, U

′
j , D

′
k)). Table 1 shows our

preliminary results when same path is used with different
device/user scenarios. Due to symmetry of data, we have
only shown an upper-triangular matrix. These are Hamming
distance results when 128-bits responses are generated. Note
that the average Hamming distance is close to 60 bits, almost
half the string length. As a comparison, AEGIS arbiter
PUFs [17] reported a Hamming distance of about 40 over



D/U 0 D/U 1 D/U 2 D/U 3 D/U 4 D/U 5 D/U 6 D/U 7 D/U 8
D/U 0 0 61 61 67 64 67 63 66 67
D/U 1 0 65 56 63 60 63 64 62
D/U 2 0 58 65 58 60 59 61
D/U 3 0 62 59 64 61 60
D/U 4 0 63 63 64 65
D/U 5 0 65 60 56
D/U 6 0 64 68
D/U 7 0 62
D/U 8 0

Table 1: Hamming Distance, Same Path, Different Device/User, Flat Average Quantization. D/U denotes a
Device/User Combination

D/U 0 D/U 1 D/U 2 D/U 3 D/U 4
63 59 56 41 61

D/U 5 D/U 6 D/U 7 D/U 8
62 40 63 25

Table 3: Average Hamming Distance over Different
Paths for Several Device/User Combinations, Flat
Average Quantization. D/U denotes a Device/User
Combination

D/U 0 D/U 1 D/U 2 D/U 3 D/U 4
63 64 64 64 62

D/U 5 D/U 6 D/U 7 D/U 8
63 64 63 63

Table 4: Average Hamming Distance over Different
Paths for Several Device/User Combinations, n = 5
Moving Average Quantization. D/U denotes a De-
vice/User Combination

128-bit strings.

Table 2 reports the same data when quantization is per-
formed with n = 5 moving average. Note that there are
no appreciable differences between the flat average quanti-
zation of Table 1 and n = 5 moving average quantization
of Table 2. In fact, n = 10 moving average and cumula-
tive moving average yield similar data and hence we do not
report them.

Similar data capturing average Hamming distance over mul-
tiple challenge paths for many user/device combinations ((user,
device, *) space) is presented in Tables 3 and 4 for flat av-
erage quantization and n = 5 moving average quantization
respectively. Note that the flat average quantization yields
a lower variability for the different path, same device/user
scenario than the n = 5 moving average quantization.

We show two of these different paths for the same user on
different devices along with the corresponding pressure data
in Figure 3. Note that the pressure differences exist along a
significant fraction of the paths.

5. UD-PUF REPRODUCIBILITY
When (same challenge, same user, same device) combination
is used, we expect perfectly reproducible response. Other-
wise, a close enough response will be rejected in authenti-

Figure 4: Challenge Path and Two Traced Paths
result in Hamming Distance 14 on 40-bit Responses

cation for not being the expected fingerprint or password.
In silicon PUFs, this issue arises since the profiling and
PUF challenge generation may occur under different ambi-
ent conditions. Variable temperature affects transistor de-
lays which in turn affects PUF’s responses. In UD-PUF,
user’s interaction- tracing a path with some pressure, is in-
herently more variable than reproducible. How do we gen-
erate consistent responses despite the presence of a human
user?

We rely on statistical error correction for this. Just like in
error correcting codes (ECC) in coding theory, a large sphere
of codes around a valid codeword is not assigned to code
words, we leave unused space - collection of paths around
each valid response. If a void code word is transmitted,
ECC force maps it to the valid code word closest to it. If
a corrupted response occurs, we map it statistically into its
”center-of-gravity” response. The downside of this approach
is that the valid challenge/response space is reduced.

MotionEvent Point Alignment:. The goal is to ensure that
two separate traced paths for the same challenge by the same



D/U 0 Dev/User 1 D/U 2 D/U 3 D/U 4 D/U 5 D/U 6 D/U 7 D/U 8
D/U 0 0 63 63 62 63 67 65 63 64
D/U 1 0 63 63 63 64 63 63 63
D/U 2 0 63 62 64 63 62 64
D/U 3 0 63 65 64 61 64
D/U 4 0 63 65 64 63
D/U 5 0 65 63 62
D/U 6 0 65 63
D/U 7 0 64
D/U 8 0

Table 2: Hamming Distance, Same Path, Different Device/User, n = 5 Moving Average Quantization. D/U
denotes a Device/User Combination

Figure 3: Two Distinct Paths/Same User/Same Device and Pressure Responses



X 

Y 

(0,0) 

Challenge path 

Traced path 1 

Traced path 2 

Figure 5: Point Alignment for Two Separate Traced
Paths

user result in the same response. However, in Android events
layer, two distinct sets of MotionEvent objects may be de-
livered for two separate traced paths. The OS sampling
is asynchronous from our needs for synchrony between two
traced paths.

Figure 5 shows a challenge path and two traced paths by the
same user. The blue points path sampled MotionEvent ob-
jects are misaligned with the red/orange points path. Even
the number of points sampled is different between the two
paths. Comparing the two traced paths at the sampled
points only amplifies the pressure value differences since the
sampled points are not aligned at the same (x, y) coordi-
nates.

First thing we perform is point alignment. We fix the evalua-
tion points regardless of the locations of the sampled points.
In Figure 5, the vertical dashed lines form these evaluation
points. We have chosen to define the evaluation points to be
vertical lines when the line segment slope is within the range
(−45◦, 45◦). Otherwise the sampling points are defined to be
horizontal lines to maximize the projection resolution. All
the traced paths are intrapolated to the evaluation points.
In Figure 5, both the blue and red/orange paths will be eval-
uated at the 4 dashed vertical lines through interpolation.
This will be a canonical representation for each traced path
which is more likely to be reproducible.

Initial Reproducibility Schema:. We evaluated reproducibil-
ity after incorporating point alignment canonical represen-
tation. As shown in Figure 4, for a challenge path, two
traced responses are drawn. We would like the Hamming
distance of these traced paths’ pressure values after quanti-
zation to be low. Hamming distance varies with the quan-
tization scheme. In this case, Hamming distance between
the two path responses was 14 bits out of a 40-bit response
with moving average n = 5 quantization. This Hamming
distance reduces to 3 with cumulative n = 40 quantization.

Figure 6: Statistical Concentration/Correction for
Profiled User

The point alignment by itself does not seem to be sufficient
for reproducibility. Ideally, we would have liked to bring
down the Hamming distance to be within 2-6 range, and
then apply an error correcting code (ECC).

Statistical Concentration or Error Correction:. The pro-
filing phase entails developing a challenge response model for
a given user and device. As shown in Figure 6, there is a
challenge path, whose proxy is the dark blue line captur-
ing the mean of the sampled data. We define an acceptable
statistical band around it - green and red lines in Figure 6.

For these experiments, we limited ourselves to single line
segments. The number of evaluation points defined on these
line segments is 32. This results in 32-bit responses. Of
course, this can be easily extended to multi-line segment
challenge paths with higher number of bits in responses.

For each challenge path, each user traces it 50 times. Hence,
at each evaluation point i, we get 50 samples pi,0, pi,1, . . . , pi,49.
Each evaluation point i is modeled as a statistical acceptor or
hypothesis Hi. We assume that these points are distributed
with a normal distribution N (µ, σ). We estimate this distri-
bution with classical estimation theory as Hi = N (µi, σi).

Once this model has been built through profiling, let us con-
sider a user tracing a response to a challenge. At the ith
evaluation point, let the intrapolated pressure be pi. By 3-
sigma rule, the probability that the point µ − 3σ ≤ pi ≤
µ+ 3σ ≈ 0.997 and µ− 2σ ≤ pi ≤ µ+ 2σ ≈ 0.95.

Our statistical acceptor can set a range [µ−kσ, µ+kσ]. If k
is high, the band of influence in Figure 6 denoted by green
and red lines is bigger. If it is too high, another user’s (Uj)
response might be acceptable within the profile of user Ui.
We have found k = 2 or the ECC band [µ − 2σ, µ + 2σ] to
be a good choice.



Figure 6 shows user Ui’s response in cyan (light) blue within
the profile generated for user Ui. Note that the response is
fully contained within the acceptable band for each evalu-
ation point. If pi at ith evaluation point is outside [µ −
2σ, µ + 2σ] band, that point is rejected. If a point is ac-
cepted, the mean value µi at that evaluation point becomes
the response.

In summary, an intrapolated, traced sequence of pressure
values p0, p1, . . . , pk is transformed into a canonical µ0, µ1, . . . , µk
pressure sequence if no points are rejected. This pressure
sequence µ0, µ1, . . . , µk will then be quantized using moving
average n = 5 arbiter to generate the binary response.

Security Analysis. Note that for normal distribution, the
probability that a given point is within 2σ band is bounded
by Pr[µ−2σ ≤ p ≤ µ+2σ] = 0.95 by 3-sigma rule. Similarly,
Pr[µ− 3σ ≤ p ≤ µ+ 3σ] = 0.997.

With 2σ method, the false negative probability that a valid
response is rejected depends on the threshold k selected in
the authentication algorithm. When 0 ≤ k ≤ N points out
of N points from the response place outside the 2σ band of
µ, the response is rejected.

Let us consider an N bit response. Each bit corresponds
to a normal distribution. Assume that each bit is indepen-
dent of the others. Let us start with k = 1, that is if even
one point fails to place within the 2σ band, the user is not
authenticated. The probability that at least one pressure
point out of N points falls outside the acceptable 2σ band
is 1 - Pr(all N points place within 2σ band). This is given
by 1 − .95N . For N = 32, this false negative probability
is 0.80629, which is quite high. If we set k = 2, the false
negative probability that at least two points will fall outside
2σ band for a genuine user is 1- Pr(all N points place within
2σ band) - Pr(Exactly one point places outside 2σ band).
This is given by 1 − .95N − N ∗ .05 ∗ .95N−1. For N = 32
with k = 2, this probability is .48004. Continuing this fur-
ther, for k = 3, this probability is 1- Pr(all N points place
within 2σ band) - Pr(Exactly one point places outside 2σ
band) - Pr(Exactly two points place outside 2σ band). This
is 1 − .95N − N ∗ .05 ∗ .95N−1 −

(
N
2

)
∗ .052 ∗ .95N−2. For

N = 32, this probability reduces to .21389.

Continuing in the same vein, if we go to k = 4, this proba-
bility rapidly reduces to 1− .95N −N ∗ .05 ∗ .95N−1 −

(
N
2

)
∗

.052 ∗ .95N−2 −
(
N
3

)
∗ .053 ∗ .95N−3 −

(
N
4

)
∗ .054 ∗ .95N−4.

For N = 32, this value is 0.020354, which is an acceptable
value. However, if we go upto k = N/4, this expression

reduces significantly to 1 − (
∑k
i=0

(
N
i

)
∗ .05i ∗ .95N−i). For

N = 32, k = N/4 = 8, this evaluates to 1.9112e−005. Over-
all, the choice of k = N/4 will give negligible probabilities
for false-negative.

With k = N/4, in the false negative probability expression

among the k terms subtracted from 1 in
∑k
i=0

(
N
i

)
∗ .05i ∗

.95N−i, the i = k = N/4 term dominates. This term has the

form
(
N
N/4

)
∗ .05N/4 ∗ .953N/4. By Stirling’s approximation

for N ! given by
√

2πN
(
N
e

)N
,
(
N
N/4

)
can be simplified to ap-

Figure 7: Statistical Concentration/Correction for a
User other than Profiled User

proximately (4/3)3N/4∗4N/4√
(3/8)∗π∗N

. When multiplied by the rest of

the multiplicands, this leads to .2N/4∗1.26673N/4√
(3/8)∗π∗N

. This term

asymptotically grows rapidly to subtract significant amount
from 1 to lead to asymptotically 0 false negative probability.

An alternate mechanism to reduce the false negative prob-
ability would be to perform authentication a few times, say
3 times. If majority of authentication runs succeed, the re-
sponse is authenticated. This is similar to triple modular
redundancy (TMR) system. With .02 probability of false
negative for N = 32 with k = 4, the TMR false negative
probability is further reduced to 1 − .983 − 3 ∗ .02 ∗ .982

which equals .00118, one order reduction.

Authentication of User Uj in User Ui Profile. Figure 7
shows the same data when user Ui profile is used to evaluate
a path generated by user Uj . Note that on average, in this
scenario, 22 out of 32 points are rejected with acceptable
band [µ − 2σ, µ + 2σ]. If we were to increase the accept-
able band to [µ− 3σ, µ+ 3σ], the number of rejected points
will decrease reducing the robustness of the reproducibility
phase.

6. UD-PUF AS A PSEUDO RANDOM NUM-
BER GENERATOR (PRG)

An Ideal PUF will appear to generate its responses to suc-
cessive challenges as if they came from a pseudo-random
generator. If the PUF behavior is close to that of a PRG,
an adversary is not likely to succeed in modeling it. This
prevents a large class of attacks against a PUF. For classi-
cal silicon PUFs, such characterizations do not exist. Most
silicon PUFs target sufficient Hamming distance separation
between responses. If pseudo-random-ness in responses is
needed, the PUF responses are put through a hash function
such as SHA-1.



Such a characterization is also ideal for small data sets. Note
that out of 2128 possible responses, our experiments gener-
ated a very small subset. More precisely, if our challenge
is 80 bits (10-bits for each x or y coordinate, and 4 such
x, y pairs). The overall challenge, response space is 208 bits
with a 128-bit response. We only generated a few thousand
challenge-response pairs. This is a very sparse data set. Esti-
mating average Hamming distance of the underlying domain
is a very difficult, and poorly understood problem. Pre-
dicting whether such a thousand long sequence came from
a PRG has been studied more thoroughly. Simard et al.
[9] have developed a TESTU01 suite for pseudo-randomness
that puts the response sequences through a variety of linear-
congruential PRG equivalence. It also checks for weaknesses
such as long 0- and 1- runs.

We put our responses from all four quantization techniques
(1) flat average quantization, (2) n = 5 moving average
quantization, (3) n = 10 moving average quantization, and
(4) cumulative moving average quantization through TESTU01
suite of tests. The following results indicate PRG effective-
ness of these responses on a battery of 26 statistical tests
enumerated in the following.
1. smultin MultinomialBitsOver.
2. snpair ClosePairsBitMatch in t = 2 dimensions.
3. snpair ClosePairsBitMatch in t = 4 dimensions.
4. svaria AppearanceSpacings.
5. scomp LinearComp.
6. scomp LempelZiv.
7. sspectral Fourier1.
8. sspectral Fourier3.
9. sstring LongestHeadRun.
10. sstring PeriodsInStrings.
11. sstring HammingWeight with blocks of L = 32 bits.
12. sstring HammingCorr with blocks of L = 32 bits.
13. sstring HammingCorr with blocks of L = 64 bits.
14. sstring HammingCorr with blocks of L = 128 bits.
15. sstring HammingIndep with blocks of L = 16 bits.
16. sstring HammingIndep with blocks of L = 32 bits.
17. sstring HammingIndep with blocks of L = 64 bits.
18. sstring AutoCor with a lag d = 1.
19. sstring AutoCor with a lag d = 2.
20. sstring Run. 21. smarsa MatrixRank with 32x32 ma-
trices.
22. smarsa MatrixRank with 320x320 matrices.
23. smarsa MatrixRank with 1024x1024 matrices.
24. swalk RandomWalk1 with walks of length L = 128.
25. swalk RandomWalk1 with walks of length L = 1024.
26. swalk RandomWalk1 with walks of length L = 10016.

(1) Flat average quantization:

Version: TestU01 1.2.3

File:/home/git/PUFProject/OutputGenerated/Strat1

Number of bits: 480

Number of statistics: 16

Total CPU time: 00:00:00.01

The following tests gave p-values outside

[0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

----------------------------------------------

1 MultinomialBitsOver 4.2e-104

2 ClosePairsBitMatch, t = 2 1.3e-6

4 AppearanceSpacings 1 - 4.1e-10

6 LempelZiv 1 - eps1

12 HammingCorr, L = 32 eps

13 HammingCorr, L = 64 eps

14 HammingCorr, L = 128 eps

18 AutoCor 1 - eps1

19 AutoCor 1 - eps1

20 Run of bits eps

20 Run of bits eps

----------------------------------------------

All other tests were passed

(2) n = 5 moving average quantization:

Version: TestU01 1.2.3

File: /home/git/PUFProject/OutputGenerated/Strat2

Number of statistics: 16

Total CPU time: 00:00:00.01

The following tests gave p-values outside

[0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

----------------------------------------------

1 MultinomialBitsOver 2.8e-12

6 LempelZiv 0.9996

19 AutoCor 3.2e-6

20 Run of bits 3.9e-9

----------------------------------------------

All other tests were passed

(3) n = 10 moving average quantization:

Version: TestU01 1.2.3

File: /home/git/PUFProject/OutputGenerated/Strat3

Number of bits: 480

Number of statistics: 16

Total CPU time: 00:00:00.01

The following tests gave p-values outside

[0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

----------------------------------------------

1 MultinomialBitsOver 3.4e-38

6 LempelZiv 1 - 2.9e-6

18 AutoCor 1 - eps1

20 Run of bits eps

20 Run of bits eps

----------------------------------------------

All other tests were passed

(4) cumulative moving average quantization:

Version: TestU01 1.2.3



File: /home/git/PUFProject/OutputGenerated/Strat4

Number of bits: 480

Number of statistics: 16

Total CPU time: 00:00:00.01

The following tests gave p-values outside

[0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

----------------------------------------------

1 MultinomialBitsOver 3.2e-121

4 AppearanceSpacings 1 - 3.1e-9

6 LempelZiv 1 - eps1

12 HammingCorr, L = 32 eps

13 HammingCorr, L = 64 eps

14 HammingCorr, L = 128 eps

18 AutoCor 1 - eps1

19 AutoCor 1 - eps1

20 Run of bits eps

20 Run of bits eps

----------------------------------------------

All other tests were passed

Note that out of twenty-six PRG tests applied in the TestU01
battery, n = 5 moving average quantization fails only 4 cat-
egories, n = 10 moving average quantization fails 5, cumu-
lative moving average quantization fails 10, and flat aver-
age quantization fails 11. We plan to use n = 5 moving
average as our quantization technique on this basis. The
n = 5 moving average quantization consistently fails Au-
toCorr, MultinomialBitsOver , and Run Of Bits. It fails
LempelZiv occasionally. This is fairly good performance as
PRG.

7. CONCLUSIONS
A Mobile device is more tightly coupled to its user than the
traditional computing model. Delivering cloud based ser-
vices in a user-device differentiated domain is a challenging
problem. We offer a user-device entangled physical unclon-
able function (PUF) as a mechanism to provide differenti-
ated user-device services, authentication and fingerprinting.

UD-PUF captures biometric of both the silicon on the device
and the native user behavior. For UD-PUF to be effective,
it should exhibit high variability in its response over any of
user, device, or challenge axes. Challenge is a path drawn
on the touch screen. We have established high degree of
variability in responses. For a change in challenge, device,
or user, 60+ bits change in a 128-bit response. n-moving
average based arbiter is needed to provide dampening to
generate high variability.

We also have to ensure that for the same challenge, same
user, and same device, response can be reproduced. We
achieve this by deploying a statistical concentrator/acceptor/ECC
scheme. We show that perfect differentiation between users
is achieved when a traced path (response) is evaluated within
a given user’s profile.

In summary, we have established the viability of UD-PUF
as an authentication mechanism for mobile devices.

8. FUTURE WORK
This is only the first step in studying such UD PUFs. Addi-
tional security vulnerabilities of these PUFs need to be ex-
plored. For instance, if the adversary can replay the Motion-
Event objects through a compromised authentication frame-
work in the OS, all bets are off. What kind of root-of-trust
should such authentication frameworks be wrapped in? How
repeatable are the UD PUF challenge-response pairs - with
gloves, in a moving vehicle, in a dusty environment? Do
such UD PUFs enable a new class of hardware entangled
cryptography?

9. REFERENCES
[1] A. Aysu, N. F. Ghalaty, Z. Franklin, M. P. Yali, and

P. Schaumont. Digital fingerprints for low-cost
platforms using mems sensors. In Proceedings of the
Workshop on Embedded Systems Security, WESS ’13,
pages 2:1–2:6, New York, NY, USA, 2013. ACM.

[2] H. Bojinov and D. Boneh. Stanford researchers
discover alarming method for phone tracking,
fingerprinting through sensor flaws, October 2013. San
Francisco Chronicle,
http://blog.sfgate.com/techchron/2013/10/10/stanford-
researchers-discover-alarming-method-for-phone-
tracking-fingerprinting-through-sensor-flaws/.

[3] S. Devadas. Physical unclonable functions and secure
processors. In Proceedings of the 11th International
Workshop on Cryptographic Hardware and Embedded
Systems, CHES ’09, pages 65–65, Berlin, Heidelberg,
2009. Springer-Verlag.

[4] S. Dey, N. Roy, W. Xu, and S. Nelakuditi. Acm
hotmobile 2013 poster: Leveraging imperfections of
sensors for fingerprinting smartphones. SIGMOBILE
Mob. Comput. Commun. Rev., 17(3):21–22, Nov. 2013.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Controlled physical random functions. In Proceedings
of the 18th Annual Computer Security Applications
Conference, ACSAC ’02, pages 149–, Washington, DC,
USA, 2002. IEEE Computer Society.

[6] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon physical random functions. In Proceedings of
the 9th ACM Conference on Computer and
Communications Security, CCS ’02, pages 148–160,
New York, NY, USA, 2002. ACM.

[7] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and
P. Tuyls. Fpga intrinsic pufs and their use for ip
protection. In Proceedings of the 9th International
Workshop on Cryptographic Hardware and Embedded
Systems, CHES ’07, pages 63–80, Berlin, Heidelberg,
2007. Springer-Verlag.

[8] S. Katzenbeisser, U. Kocabaş, V. Rožić, A.-R.
Sadeghi, I. Verbauwhede, and C. Wachsmann. Pufs:
Myth, fact or busted? a security evaluation of
physically unclonable functions (pufs) cast in silicon.
In Proceedings of the 14th International Conference on
Cryptographic Hardware and Embedded Systems,
CHES’12, pages 283–301, Berlin, Heidelberg, 2012.
Springer-Verlag.

[9] P. L’Ecuyur and R. Simard. Testu01: A c library for
empirical testing of random number generators. ACM
Transactions on Mathematical Software, 33(4):22–40,
2007.



[10] J. Liu, L. Zhong, J. Wickramasuriya, and
V. Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications.
Pervasive Mob. Comput., 5(6):657–675, Dec. 2009.

[11] D. Merli, G. Sigl, and C. Eckert. Identities for
embedded systems enabled by physical unclonable
functions. In M. Fischlin and S. Katzenbeisser,
editors, Number Theory and Cryptography, volume
8260 of Lecture Notes in Computer Science, pages
125–138. Springer Berlin Heidelberg, 2013.

[12] National Institute of Standards and Technology
(NIST). FIPS-180-2: Secure Hash Standard, Aug
2002. available online at
http://www.itl.nist.gov/fipspubs/.

[13] U. Rührmair, F. Sehnke, J. Sölter, G. Dror,
S. Devadas, and J. Schmidhuber. Modeling attacks on
physical unclonable functions. In Proceedings of the
17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 237–249,
New York, NY, USA, 2010. ACM.

[14] N. Sae-Bae, N. Memon, K. Isbister, and K. Ahmed.
Multitouch gesture-based authentication. Information
Forensics and Security, IEEE Transactions on,
9(4):568–582, April 2014.

[15] G. E. Suh and S. Devadas. Physical unclonable
functions for device authentication and secret key
generation. In Proceedings of the 44th Annual Design
Automation Conference, DAC ’07, pages 9–14, New
York, NY, USA, 2007. ACM.

[16] G. E. Suh, C. W. O’Donnell, and S. Devadas. Aegis:
A single-chip secure processor. IEEE Design & Test of
Computers, 24(6):570–580, 2007.

[17] G. E. Suh, C. W. O’Donnell, I. Sachdev, and
S. Devadas. Design and implementation of the aegis
single-chip secure processor using physical random
functions. In Proceedings of the 32Nd Annual
International Symposium on Computer Architecture,
ISCA ’05, pages 25–36, Washington, DC, USA, 2005.
IEEE Computer Society.

[18] Z. Syed, S. Banerjee, and B. Cukic. Leveraging
variations in event sequences in keystroke-dynamics
authentication systems. Ninth IEEE International
Symposium on High-Assurance Systems Engineering
(HASE’05), 0:9–16, 2014.

[19] J. Zhang, X. Wang, P. Wu, and J. Zhu. Sensec:
Mobile security through passive sensing. 2013
International Conference on Computing, Networking
and Communications (ICNC), 0:1128–1133, 2013.


