
Biometric Bit locker
Design Document

Team: 23

Client/Advisor: Akhilesh Tyagi

Yousef Al-Absi/DevOps, Cole Alward/Scrum Board Master, Morgan Anderson /Scribe, Larisa

Andrews/Scrum Master, Ammar Khan/Product Owner, Justin Kuhn/Testing Engineer

sdmay19-23@iastate.edu

 http://sdmay19-23.sd.ece.iastate.edu/

mailto:sdmay19-23@iastate.edu
http://sdmay19-23.sd.ece.iastate.edu/

Contents
1 Introduction ... 3

1.1 Problem Statement ... 3

1.2 Project Goals and Deliverables .. 3

2 Design Specifications ... 3

2.1 Proposed Design ... 4

2.2 Design Analysis.. 5

3 Testing and Implementation .. 6

3.1 Interface Specifications ... 6

3.2 Hardware/Software .. 6

3.3 Functional Testing ... 6

3.4 Non-functional Testing .. 7

3.5 Modeling and Simulation .. 8

4 Closing.. 8

4.1 Conclusion ... 8

1 Introduction

1.1 Problem Statement

Our problem is the inability to fully encrypt phone data because of the lack of a
TPM(Trusted Platform Module) chips on Android phones. We can solve the problem by
dynamically generating the key using a PUF(Physical Unclonable Function).

1.2 Project Goals and Deliverables

Goals:

• To develop an open source PUF library.

• To make the PUF work as a lock screen by asking a user to draw shapes to
unlock the phone and authenticate then properly.

Deliverables:

• A well tested PUF Java gestures library
o An open source library that should be released with unit tests and

rewritten methods. We need to provide a valid testing framework
and an appropriate architecture for the software.

• A PUF based Android app
o The app should act as a lock screen whenever the phone is closed,

it’ll authenticate users by asking them to draw a shape and it
should only work for the correct user. The app will also
automatically start when the phone boots.

2 Design Specifications
• Functional Requirements:

o Application should appear whenever the phone is locked
o Application should be able to create multiple profiles
o Application should be able to authenticate users
o Application cannot be closed when its locking phone

• Non-Functional Requirements:
o Performance: Response time for authentication should be less than 4 seconds.
o Scalability: Application should have more than 2 profiles.
o Maintainability: The repository should update the application automatically
o Security: Only the proper user can unlock the application.
o Data Integrity: Data will be encrypted and decrypted successfully provided the

correct key.

2.1 Proposed Design

There is already considerable work done to implement our proposed solution
since we are picking up an approximately four-year-old project. The selected solution
was to develop an Android application that generates patterns for the user to trace, and
then can authenticate and identify the user based on the pressure readings on the
screen. Everyone will have slightly different habits regarding how much pressure they
apply when tracing certain patterns, but these behaviors are reproducible and
distinguishable enough to be used as a reliable means to differentiate users. This system
would initially be used to encrypt at the application level, but the goal is to find a way to
get this encryption to take place at the kernel level during boot up so that we can
achieve full disk encryption more like a traditional bit locker. However, this level of
encryption becomes difficult on mobile phones due to the lack of the Trusted Platform
Module Chip (TPM) which is used for encryption on laptop computers. We intend to get
around this issue by using a Physical Unclonable Function (PUF), which will generate the
key that allows us to encrypt and de-crypt data. The PUF has already been developed
along with the application that generates the traces and identifies the user. While these
parts of the solution have been developed, they still need to be further tested and
refined.
 Right now, the trace generating application is only able to generate traces and
recognize users. We still need to implement the actual encryption of data and we need
to integrate the application into the Android operating system. The initial goal is to
simply be able to encrypt data at the application level. An example of this would be the
user attempting to open a messaging application. The application data should be
encrypted and then the user should be prompted to trace some generated patterns. The
user would trace the pattern and if they were successfully identified and authenticated,
the PUF would generate the key to de-crypt the application data and the user would
then be able to access the application. The end goal for our user is to have full disk
encryption occur at the kernel level before the operating system is even loaded.
However, due to the way Android works, we are not entirely sure if this is possible yet.
Our plan is to first implement the encryption at the application level and then
progressively move the encryption back until we reach a point where we cannot move
encryption any earlier in the boot cycle.

Figure 1 Initial Design Overview

2.2 Design Analysis

The proposed solution has various strengths that will motivate our success. The
trajectory of our plan allows us to initially solve what should be an easier problem and
use the information to implement a more secure and difficult solution. We also benefit
from PUF being so far along in the process; the project was started 4 years ago.
Consequently, we have the luxury of focusing primarily on using PUF in conjunction with
our solution, mitigating the scope of the problem. Although the PUF concept is relatively
new, there are many academic papers analyzing the topic, so we are confident that the
part of the solution using PUF is feasible.

However, it is still undetermined if this solution is possible; we may not be able
to encrypt at the kernel level. There may be a reason why Android has not shipped
products with this level of encryption, such as applications sitting on top of the
operating system may not be able to access what they need to. Similarly, very few
resources on the subject exist that we can utilize. Although it helps to have a subset of
the solution (the PUF library) already functioning to some degree, it could also be a
hindrance to update and fix it, as drastic changes may need to be done to it. Although
the PUF concept is established, it does not address issues like drastic changes in climate,
which would affect authentication.

3 Testing and Implementation

3.1 Interface Specifications

o Interface should be an Android application.
o Interface should have an option for creating a new profile
o Interface should have an option for deleting a profile
o Interface should have accessibility labels
o Interface should have help options for anything in the application.
o Interface should start with the system booting.

3.2 Hardware/Software

Most of our development so far has been Android application development, so
we have been doing most of our development and testing with Android Studio. When
we eventually begin exploring kernel level encryption, we will begin working at the
kernel level and this may require us to use additional software tools but that has yet to
be determined as of this stage.
 As far as hardware is concerned, all the initial testing that was done with the
application before we took up the project was done on Nexus 7 tablets. Currently, we
are specifically testing the PUF and the Android trace applications ability to identify a
specific user, so we want to minimize hardware variations to really focus on the
accuracy of the software. As a result, we will currently continue to test with Nexus 7
tablets however we do plan to increase our range of test hardware later in the project.

3.3 Functional Testing

Every new Java class created should have an accompanying Junit Test class that
shows correct and incorrect behavior as well as demonstrates working results. This
testing class should coincide with the Java class in question in file hierarchy within the
testing folder for ease of access and identification. Unit tests should be created as seen
necessary to keep testing requirements unrestrictive to development time, however
each new method should see some amount of coverage.

Integration testing should begin once component dependencies start to show in
new features, and integration tests should be designed for expected results with the
intent of real data being returned from the depending component. Integration testing
should be designed with only between required components in a new functionality, with

the remaining existing components mocked or stubbed to keep the test functional
requirements isolated and reliably tested.

System testing of the proposed solution and its requirements will be initiated as
multiple components of the solution approach full functionality. System tests will
primarily be created by the test engineer of the team, however other members of the
team most familiar with specific components are invited to aid in creating parts of end-
to-end testing as well. System tests are end-to-end and will allow us to demonstrate
that all functional requirements are enough in a live environment on the Nexus 7 tablet.

Acceptance testing will be down in two stages:

1. Tickets are reviewed at the closing of a ticket where Unit and any
Integration tests are validated.

2. Components are verified at the end of their completion to ensure all
desired functional requirements are met and pass all system tests.

3.4 Non-functional Testing

There are several non-functional requirements that must be met in acceptance
testing to verify the product.

• Performance: Testing will require the actual use of the Nexus 7 tablet for real
world scenarios. Given the requirement that full authentication should take no
longer than 4 seconds to complete, acceptance testing for this feature will begin
as soon as the user traces the onscreen pattern. Authentication systems are
heavily reliant on the speed of the device alongside the optimization of the
authentication process. In the case of this requirement not being passed, further
optimization of the code may be necessary.

• Scalability: Given that more than 2 profiles are necessary for convenient testing,
an acceptance test will consist of over 2 user profiles being created on the device
while ensuring that all profiles are saved and accessible by each user. Each user
with a profile will be able to unlock their application data on the same device.

• Maintainability: Acceptance testing requires that the project repository can
update the version of the application automatically and without human
intervention. Testing consists of pushing an update to the repository to prompt
the repository to upload the updated application. Note that this test must be
used sparingly to avoid spamming the distribution platform.

• Security: Testing is comprised of a user prompting the application for the
authentication process and tracing the pattern on a device in which they do not
have a profile created for them. A passing test consists of the application
denying the user access and failing authentication gracefully.

• Data Integrity: Data must be correctly encrypted and decrypted without
corruption for the application to operate successfully. Several system tests will
be composed of encrypting and decrypting different types of files and

application information with comparisons of the data before and after this
process to ensure that the integrity of the data is maintained for the user.

3.5 Modeling and Simulation

To assist in testing the application, our team uses Android Studio to model the
layouts of activities throughout the program. Doing so helps ensure the accuracy of the
client’s desired application appearance. Additionally, Android Studio provides access to
an emulator which simulates a user utilizing the application and allows developers to
easily test functional requirements. By using this form of simulation, program behavior
and a user’s experience can be quickly evaluated.

 3.6 Implementation Issues and Challenges

There are several implementation issues and challenges related to development
of this project. By design, once authentication profiles for each user are created, they
are tied to the device they are created on. Therefore, our testing environment is not
very mobile, which makes this very difficult as each set of profiles must be tested on an
exact device. In this same way, we also cannot develop the application for any other
devices in the project’s current state as authentication is designed for use with the
nexus 7’s hardware. Another issue is the level of encryption we can implement within
the android SDK. It is unclear yet whether we can implement out application as the
operating system is booting for an ideally lower level of protection. It’s also unclear if
implementing full disk encryption is a feasible solution for this application, or whether it
would create an unfriendly user experience requiring constant user authentication from
the user by the operating system.

4 Closing

4.1 Conclusion

Currently the team is working on designing and implementing test procedures

and documenting the provided library. Once the library is fully tested and documented

the team can start work on integrating the library into an android application. Once the

application can encrypt and decrypt in a way which satisfies the previous functional and

non-functional requirements the feasibility of encrypting at a kernel level can be

decided upon. The goal for the end of the project is to deliver to the client a functioning,

well-tested and documented application that can encrypt/decrypt using the PUF at the

lowest android level feasible.

